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The mean spherical model with an arbitrary interaction potential, the Fourier 
transform of which has a long-wavelength exponent a, 0 < a ~< 2, is considered 
under periodic boundary conditions and fully finite geometry in d dimensions, 
when a < d < 2o. A new form of the finite-size scaling equation for the spherical 
field in the critical region is derived, which relates the temperature shift to 
Madelung-type lattice constants. The method of derivation makes use of the 
Poisson summation formula and a Laplace transformation of the momentum- 
space correlation function. 
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Madelung lattice constants. 

1. I N T R O D U C T I O N  

The formulation of finite-size scaling ideas (1,2) at the beginning of the 1970s 
revived interest in the spherical model. (3-5) Due to the remarkable oppor- 
tunity it offers for a rigorous study of finite-size effects at arbitrary dimen- 
sionality, this model became a touchstone for various scaling hypotheses 
and a source of new ideas in the general theory of finite-size scaling both in 
the critical region (~12) and in the vicinity of a first-order phase 
transition. (13-17) Its relation to other current problems in the theory of 
phase transitions and criticality is outlined in ref. 18. 

In this paper we consider the ferromagnetic mean spherical model (4) 
with periodic boundary conditions in fully finite geometry. The model 
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Hamiltonian is defined on a d-dimensional torus TN= {1 ..... No} d of 
N = No ~ sites and has the form 

WN = _ 1  ~ J(Ir - r'l) O'rO" r, - -  H ~  O- r (1.1) 
r, r '  r 

where rff~-u, arff •1 is the spin variable at site r, J([/[) is the pair interac- 
tion potential, and H 6  ~1 is an external magnetic field. The exact partition 
function of the finite mean spherical model depends on the interaction only 
through its Fourier transform 

J(q)= ~ J(lll)exp(-il 'q),  q=2~p/No,  p~= l,..., No (1.2) 
1~ ~ N  

where 

~ N = {  No-1 No-l} d 
~ , . . . ,  0,..., - -  U - 

and is given by the expression 

Is- 1 ZN(SIfl'H)=~N/2exp ( 4 ( S ~ 0 ) ) J  p~Vu -2fi']\ NoJJ (1.3) 

Here f l > 0  is the inverse temperature and the Lagrange multiplier 
s = Su(fi, H) obeys the mean spherical constraint 

0s log ZN(Slfi , H) = N (1.4) 

If we set 

s = �89 + 1) 

then the equation for the spherical field (1.4) takes the form 

W ( d U ) ( ~ ) )  ~-  ]~J(0){ 1 -- [H/J(0)~b] 2 } 

where 

(1 .5)  

W~N)((~)=No a ~ [~b+2(2gp/No)] 1 (1.6) 

2(q) = 1 -- ,](q)/,](O) (1.7) 
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The study of the difference between the d-fold sum (1.5) at large No 
and small ~b and its limiting d-dimensional integral 

Wd(~b ) = (2~z) a .-. daO [~b +2(0)3 (1.8) 

is the cornerstone in the derivation of finite-size effects in the mean 
spherical model. There exist several approaches to the solution of this 
problem: direct evaluation of the closeness of the sum to the limiting 
integral, ~17) methods based on the Poisson summation formula, ~8'm'11) and 
the Ewald summation technique. (~2) 

The use of the Poisson summation formula makes possible the explicit 
separation of finite-size effects from the bulk contribution. (8're'ill This 
approach is readily applicable to systems with short-range interactions, 
when the Fourier transform (1.2) has a quadratic long-wavelength 
asymptotic form. 3 Then one has to calculate the d-dimensional Fourier 
transform of (5+  q2)-1, 5 =  2&b, which can be easily performed by using 
the elementary identity 

vo d 
(5+q2)-~ I_ dtexp( -S t )  1] e x p ( -  2 = q~t) (1.9) 

This trick reduces the problem to the calculation of one-dimensional 
Gaussian integrals over - z  < q~ ~< z, c~ = 1,..., d. 

On the other hand, an arbitrary long-range interaction, decaying at 
large distances as 1/r a+~ with a > 0, has a Fourier transform with the long- 
wavelength asymptotics (s'19'2~ 

J(q)=J(O)[1-p~lql~176 O<cr <2,  6 > 0  (1.10) 

The finite-size effects in this case have been studied only by the direct 
evaluation method and near the first-order phase boundary/lv~ 

One of the motivations of the present work was the wish to study 
finite-size effects in the spherical model with long-range ferromagnetic 
interaction of the type (1.10) in the critical region as well. The main idea of 
our approach becomes transparent when one considers the identity (1.9) as 
a Laplace transformation of the function exp(-St ) .  Then, for interactions 
(1.10) with arbitrary a e  (0, 2), instead of (1.9) we write 

d 

[5+(q2)~ -~ f~dtFo/2(5, t) I] exp( 2 = -q~t)  (1.11) 

3 By comparing the results of refs 8 and 1.0 with those of ref. 11, one concludes that the finite- 
size scaling is determined by the leading asymptotic form of the function J(q) and does not  
depend on its detailed behavior. 
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which also reduces the problem to the calculation of one-dimensional 
Gaussian integrals and the evaluation of their asymptotic behavior. The 
most surprising fact is that the explicit form of the function F~/2(~, t), the 
Laplace transform of which is (~+q~)-~,  is even of no importance. This 
makes it possible to study in a very simple and uniform way both cases of 
short-range (a = 2) and long-range (0 < a < 2) interactions. We expect that 
the application of the present approach is not restricted to the spherical 
model only. 

The paper is organized as follows. In Section 2 we explicitly show that 
the finite-size effects in the critical scaling regime do not depend on the 
details of the interaction (which for simplicity we assume isotropic), but 
only on the exponent o- of the Fourier transform J(q). This enables us to 
replace J(q) by its leading asymptotic form all over the Brillouin zone. In 
Section 3 we evaluate the d-dimensional Fourier transform of (~+  q")-~, 
which appears in the finite-size term derived by the application of the 
Poisson summation formula. The leading scaling behavior of the bulk and 
finite-size terms is derived in Section 4. There we obtain the main result of 
this paper: a new representation of the equation for the spherical field, 
valid for any a > 0  and a < d < 2 a .  A straightforward, although not 
rigorous, derivation of our representation is given in Section 5 together 
with a brief discussion. Comments on some mathematical problems arising 
in our approach are given in the Appendix. 

2. T H E  L O N G - W A V E L E N G T H  A S Y M P T O T I C S  A N D  
F IN ITE-S IZE  EFFECTS 

The derivation of the finite-size scaling equation is considerably 
facilitated by the consideration, instead of the original interaction J(lll ), of 
a model asymptotic one, Ja=([/I), the Fourier transform of which is exactly 

ya=(q) = J(0)[ 1 - Po Iq[ ~] (2.1) 

all over the Brillouin zone - n  < q~ ~< n, ~ = 1,..., d. That is why we first 
prove that the error produced by such a replacement does not affect the 
leading finite-size terms, which are of the order (17) O(No d+~) for 
a<d~<2a .  It is assumed that the original interaction is isotropic (for 
simplicity of notation) and ferromagnetic, i.e., that J(q) reaches its unique 
maximum at q = 0. 

By following the usual procedure based on the Poisson sum formula, 
one may cast the d-fold sum in Eq. (1.6) into the form (8'1~ 

m(d N)(~) ~- Wd((~) + Z '  g(~; Nok)  (2.2) 
k6z d 
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where the prime in the sum over k ~ 7/J denotes the omission of the k = 0 
term. In the right-hand side of Eq. (2.2) Wu(~b)= os(0; 0) is the bulk term 
(1.8), and ((~b; k) is the Fourier transform of the summand in (1.6): 

~(~b; k) = N o  a . . .  ddp l-~b + 2(2=p/N0)] -~ e x p ( -  2~rik �9 p/No) 

f~ f~ =(2zt) -a  ... daO [ ~ + 2 ( 0 ) ]  ' e x p ( - i k . O )  (2.3) 

Now, along with d(q~; k), we define 

f~ f~ ~as(~; k) = (2zc)-J daO ((~ + p~ L0[ r -~ exp( - i k "  0) (2.4) 

Considering first the approximation error in the bulk term when ~b = 0, 
we use the identity 

~as(~ ;  O) - -  g ( ~ ;  O) 

=(2rt)  d . . .  ddOf~(O)_(b(2~z) d . . .  ddOf~(O)ho(O;4)  
rc  1"c - - i t  - -  ~z  

(2.5) 

where 

L ( 0 )  - 4 ( 0 ) -  p~lOl ~ _ o ( i o l  , . )  (2.6) 

r + p~ IOl ~ + 4(0)  
ho(0; ~b)- (2.7) 

The first integral on the right-hand side of Eq. (2.5) converges at 0 = O for 
all d >  a -  6 and we set 

f~ f~ Ad, = (27r) a . . .  daOf, (O) ,  
--72 Z~ 

d > a - 6  (2.8) 

Next, since h,(0; 0 ) =  O(101-~), the second integral in Eq. (2.5) converges 
at ~b ~ 0 for all d >  2 a - 6  to the constant 

f~ f~ Bd,~ = (2~)-d d'~O f~(O) ho(0; 0), 
r e ' ' "  

d > 2 ~ r - 6  (2.9) 
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Now let (~ - 6 < d < 2a - 3. By writing 

Ba, o(qb) = (2rc)-a ... daO f,(O) h,,(O; ~b) 

= (2rc)-a . . .  daOf,(O)h,,(O;qk)+(2rc) d ... aaof,(O)h,(O;(~) 
- - r e  ~c ;~ - - r e  

(2.10) 

and using the asymptot ic  form (1.10) of J(0)  for [0[ ~<e, where e is 
sufficiently small, together  with the proper ty  of 2(0) to have a unique 
max imum at 0 = 0, we obtain the following estimates: 

(a) (T-  6 < d < 2 ( r - &  

Ba,~ i ~gd+a ~ ) + o ( e d + a  2.) (2.11) 

The choice of e > 0  on the r ight-hand side of (2.11) can be optimized by 
setting e = O(~bl/~), which results in the estimate 

B a,~ ) = 0 (  ~ (d +'5- 2a)/") (2.12) 

(b) d =  2o r -  & 

Bd,~(O) = O(~b--1Ea)_ O(log ~) 

The optimal  choice is again ~ = O(~bl/~), which leads to 

Bd, o(~b) = - O ( l o g  ~b) 

(2.13) 

Combining Eqs. (2.5) and (2.8) with the corresponding estimate (2.9), 
(2.12), or (2.14), we obtain 

~as(~b; 0) - g(~b; 0) - Ad, . = 

l O(fb(d , + a)/,), a - a < d < 2 a - 6  

O(qi log ~b), d =  2a - 6 

O(ff ), d > 2a - 6 

(2.15) 

It is well known (see, e.g., refs. 17 and 20) that  the Watson- type  
integral (1.8) has the following asymptot ic  form when ~b + 0: 

i w d(0)- ,') ,~<~ .v. 
Wd(~b) = Wd(O) + Qa,2d~b log ~b, d =  2a (2.16) 

Wd(0) - Qa,,~b, d >  2(~ 

(2.14) 
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By comparing (2.15) and (2.16), we conclude that for all d such that 
o<d~<2o ,  the deviation of the actual Fourier transform J(q) from its 
leading asymptotic form (2.1) is irrelevant to the bulk critical properties 
(i.e., whenever ~b-+0); it may affect just the value of the critical tem- 
perature. 

Next we consider the finite-size term in Eq. (2.2). Due to the presence 
of the rapidly oscillating factor e x p ( - i N 0  k" 0) in the integrand, one has 

~as(~, Nok)_ ~(~b, No k) 

( 2 ~ ) - a f  = f = ddO exp( -- iNo k" O) 
2(O)-p~lOI ~ 

[~ + p~, LOl ~] [~ + ~.(0)] 

~ O( a+6 o)/Ob(Nor176 ~) 

where, at ~b ~ 0 and finite No(b 1/~ 

(2.17) 

b(No(bW*k; (~) 

~_ b(No(~W~ O) 

=(27~) d I~176 .." f ~176 ddx [exp(--iNo~)i/'~k" x)]  O(Ixt ~ + G ) ~ I + p * I x l G ] - 2  
-o(3 

(2.18) 

Since the scaled spherical field ~vt ~bNg is finite in the critical region Esee 
Eq. (4.20) below], the ]k] --* oo asymptotics of (2.18) 

b(No~bW~k; O) = O(Ikl d-~ a) (2.19) 

ensures the absolute convergences of the d-fold series 

~ '  b(No(bW~k; O) = b(No~b ~/~ (2.20) 
k~Z d 

Therefore, 

F ,  .~ g(~b; No k) 
k 

= ~ '  ~a=(~b; N o k ) -  O(No a+~ 6)(r 
k 

(2.21) 

which implies that the leading O(No d+~) finite-size terms are determined 
solely by the Iql ~ asymptotics of J(q). This fact has been used in ref. 17. 

Summarizing, without loss of generality, we may confine ourselves to 
the study of the simplest representative of each universality class, namely 
the one with J(q) of the form (2.1) for all q, - ~  < q~ ~< ~z, ~ = 1,..., d. 
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3. E V A L U A T I O N  OF T H E  d - D I M E N S I O N A L  F O U R I E R  
T R A N S F O R M  

Here we present our method of evaluation of the leading asymptotic 
form of the Fourier transform ~a~(~b; N0k). For simplicity of notation, in 
the remainder we set ~ =  ~/p~. 

Suppose that the function F~(t) is defined by its Laplace transform 

( 1 + s ~ ) - 1 =  F ~ ( t ) e - " d t  (3.1) 

for s,/~ > 0. Then 

pa gas(~; Nok) 

= (2~)  a . . .  d a O ( ~ _ l O l , ) - l e x p ( _ i N o k .  O) 

= ~2/o ~ dx F~/2(~2/~x) dO~ exp( - iNok~ . O~ - xO~) 

-~-3-~a/f dxF~/2(~2/"x)x -a/2 exp 4x J 1-I Re{OS(z~)} 

(3.2) 
Here cP(z~) is the error function of a complex variable z~, 

z~ = gX 1/2 + l iNok~x-1/2 

and Re{qS(z~)} denotes its real part. 
Since for ks r 0 

Iz=12 >>- ~No[k=l --, oe, No ~ ~ (3.3) 

uniformly in x >~ 0, one may use the known large-[zl asymptotic expansion 

ul/2zeZ2[1 - ~b(z)] = 1 + O(z -2) (3.4) 

and prove that the leading asymptotic form of the right-hand side of 
Eq. (3.2) results by setting q~(z~)= 1, ~ = 1 ..... d, i.e., 

where 

po g~(~; Nok) 
~2/~--  1 oo 

~- 2ar~ d/2 fo dx F~/2(~2/~ ~/2 exp -Ngk-----~24x 

~ 2 P r -  1 ( 2 ~ d - -  2 oe Y2I) t-d/2 __ Tt:2k 2 
= ~ a / 2  \~o,J  fo dt F~/2( exp - - t  (3.5) 

y = ~l/~No/2~r (3.6) 
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4. EQUATION FOR THE SPHERICAL FIELD 

Here we obtain the leading scaling behavior of the bulk and finite-size 
terms in (2.2) and derive the corresponding asymptotic form of the 
equation for the spherical field (1.5). 

By substituting (3.5) into the sum on the right-hand side of Eq. (2.21) 
and exchanging the order of summation and integration, one obtains 

~ '  ~(~b; Nok) 
k~2e d 

- P~2 azt----a72 \ / dt F~/2(yZt)t -a/2 e 
k ~  d 

Next, following refs. 8 and 11, we use Jacobi's identity 

~ '  e _~2k2/, = ' e -k2~ + 1 - 1 (4.2) 
k 

to transform expression (4.1) into 

~ '  g(~b; N0k ) = p~l(2Tcy) ~N;-a[1  + y2I(y2)] (4.3) 
k 

where 

I ( y 2 ) = ~ ? d t F ~ / z ( Y Z t ) I ~ ' e - k 2 ' - ( t ) a / 2  ] (4.4) 

We notice that the two terms in the square brackets in Eq. (4.4) cannot be 
integrated separately, since the d-fold sum 

fo g dt F,/2(yZt)e-k2'= y=2 ~ '  [1 + (k/y) ~] 1 (4.5) 2' 
k E z d  k 

diverges ar d~> a and so does the integral 

~a/2 f ?  dt F~/2(y2t)t a/2 (4.6) 

Nevertheless, we can transform further Eq. (4.4) by using the small- 
argument asymptotics of F,/z(t), which follows from the definition (3.1): 

F~/2(t) = t ~/2 l/F(a/2) - t ~ 1/F(a) + O(t 3~/2 1) (4.7) 

For a < d <  2(r we write (4.4) identically in the form 

i(y2) = i~(y2) + i2(y2) (4.8) 
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where 

f: ] Ii(y 2) = at [F./z(y2t)-- (yZt)"/2 11v(~/2)] ' e-~2'-  (~lt)da 

- f~  dt F./2(y2t) - (y2t)"/~ 1/r(G/2)](rc/t)~/2 

= _y2 Z' (k/Y)-"[(k/Y) ~+ 1] 1 + (2~z)aye-ZDa,. (4.9) 
k 

and 

= [ y ~  2//"(o-/2)] lim ' ~ k 2 t - - g  d/2 dtt (~ 
3 ~ 0  ~6 

: y~r -- 2 Ca, o/F(o-/2) ( 4 . 1 0 )  

In (4.9) we have introduced the notation D<o for the integral 

Da.~=-2-arc -a/2 dxx  ~/2[F,,/2(x)-x~/2-1/F(o-/2)] (4.11) 

and in (4.10) Ca.~ denotes the Madelung-type constant (see, e.g., ref. 21) 

�9 ddk F(o-/2, 6kZ)k ~ (4.12) 
L k e Z d  --oo 

Here F(c~, x) is the incomplete gamma function. 
Finally, from (4.3), (4.9), and (4.10) we obtain 

~ '  ~(r Nok) 
k~77d 

p f f m N o d + a  {1/~N~ + C d,~/( 2~ )* F( a/2 ) 

+Dd,.(~Ng) a/* 1-~N~ ~'  (2~k) ~[(2nk)~ ~t (4.13) 
k f f Z  d ) 
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The leading asymptotic form of the bulk term can be obtained by 
setting k~=0,  ~ =  1,..., d, in Eq. (3.2) and then separating the small- 
argument asymptotics of Fo/2(t): 

- - -  1 o o  

pc~gas(~; 0) = 2d~-~-f0 dx x d/2F~/2(~2/~X)[CP(rcxl/2)]d 

~--po~as(o;O)--Da, og a/~ 1 (4.14) 

Here 

po~as(o;o)=[2aTzJ/2F(ff/2) ] 1 dxx(~, d 2)/2[CI)(gXl/2)]d (4.I5) 

and De,~ is the constant defined by Eq. (4.11). 
Now we are ready to write down the equation for the spherica! field 

~= fb/p~ in the critical region. Taking into account the definition of the 
bulk critical temperature 

/?~.J(0) = Wd(0) (4.16) 

and collecting the results (1.5), (2.2), (4.13), and (4.14), we obtain 

1/~U; + C~,~/(2~) ~ r (~/2)  - ~N; ~ '  (2~k) ~ ~ + ~N~] L 
k 

= [(/~ -/~c)P~ J(0) - ~ H 2 / p j ( O ) ~  2] Ng -~ (4.17) 

By introducing the appropriate scaled variables 

x, = / L p  j ( 0 ) ( 1  - /~/ /~ - ~ ) N o  ~= ~ 
(4.18) 

x2 = [fl/poJ(O) ] 1/2 HN(oa+ ~ 

where e u is the finite-size temperature shift 

g'u = --Ca,~[fl~PJ(O)(2~z) ~ F(a/Z)Ng -~] ~ (4.19) 

we can write Eq. (4.17) in the universal form 

1 2 '  , _ (  x2 ,]2 (4.20) ~N----~- ~N~ k~Zd (2~zk) ~[(2~k) ~ + gN; ]  = - x ,  \ ~ N J  
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5. D I S C U S S I O N  

There is a very straightforward, although not exact and rigorous, 
derivation of Eq. (4.20). It starts with Eqs. (1.5) and (1.6) and the identity 

No d 2 [++ (2xpq ' 

.~ -N k No ) J  

=No  d 2 '  [ Z ( 2 n p ~ ] - '  
. ~ - , ,  k N o ) J  

1 ~ (5.1) 
.~-,< \-~-0)J \ No )J 

The first term on the right-hand side of Eq. (5.1) is of order unity for d >  a 
and we may set 

No -d Z'  [ 2 (2np ' ] ] - '  
P~ ?]-N ~k NO / /1 = ]~, J ( 0 ) ( 1  - -SN)  (5.2)  

where eN --* 0 as No --* oe. The large-No and small-r asymptotic form of the 
last term on the right-hand side of Eq. (5.1) for a < d <  2a is determined by 
the small-argument behavior of 2(q); thus, we have the approximation 

I'~'N t, No }J -4- t ~ ) ]  

~- ( ~ p . ' N g  ~ '  (2np)-:[r  + p.(2~p)"] -i 
P~TN 

"" p ~ i ~ N ;  2 '  (2xP) -~ [(2xp)" + ~Ng] ' (5.3) 
p~Z d 

Combining the above results with Eq. (1.5), we recover exactly Eq. (4.17), 
provided the values of SN is specified according to Eq. (4.19). 

Thus, one of the main contributions of our work consists in suggesting 
a method of justification of the approximations involved in Eq. (5.3). Some 
mathematical problems arising in our approach are discussed in the 
Appendix. 

Next, we have given an analytic definition of the temperature shift ~u 
that makes connection to the Madelung-type lattice constants. (24) The 
result of Shapiro and Rudnick (~2) is based on numerical approximations. 
Expression (62) of ref. 12 for the temperature shift in our notations takes 
the form 

d ~SNR C N d ~ = ,fl<Y o J. (5.4) 
4 n ( d -  2) 
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On the other hand, in the case of a simple cubic lattice with nearest 
neighbor interactions of strength J, one has a = 2 and pzJ(0)=  O r, which 
simplifies expression (4.19) to 

Ca,: (~cJNd_ 2)-1 (5.5) 
g N  = - -  47[-----5- 

The numerical value of C3,2 found by Harris and Monkhorst  (24~ (see also 
ref. 21) is C3,2 = -8.913633.  This gives for the numerical prefactor in 
Eq.(5.8) the value of 0.225785, which is to be compared to the 
corresponding value of 0.238 732 in the approximation (5.4). 

We believe that Eq. (4.20) provides a very natural basis for deriving 
useful asymptotic expressions for the spherical field. We mention here two 
limiting cases. 

When ~N~>> 1, for a < d < 2 a  we may approximate the sum in 
Eq. (4.20) by an integral(IV): 

~N~) ~ '  (27[k) "[(27zk)" + ~N~] 1 
k ~ Z  d 

=(27[y) ~ ~ '  ( k / y ) - ~  
k e 7 / d  

27[a/2 y a-  ~ ( ~ r d - a - 1  dr 

F( d/2 )( 2rQ ~ Jo 1 + r ~ 

: Ga,,(aN•) (a- "'/" 

where [cf. Eq. (3.22) in ref. 17] 

27[  

Gd,. = o_(4rc)a/2 F(d/2)[sin(7[d/a)[ 

(5.6) 

~- [[Scp~ )(O )/G a,~]"/~- ~ - IS~L) ~ "~ (5.7) 

i.e., it recovers the familiar bulk high-temperature, zero-field result35) 
Whenever Eq. (4.20) has a solution ~Ng)<i 1, use can be made of the 

asymptotic expansion (26) 

~ '  (27[k)-~[(27[k)~+~Ng] 1=(27[) 2~ y,' k -2o+O(~N~) )  (5.8) 
k ~ Z  a k e Z d  

The above asymptotic form has been derived by Fisher and Privman(17); at 
a = 2 it agrees with the corresponding expression derived by Hall. (25) With 
the use of (5.6) one finds the asymptotic solution of Eq. (4.20), which to the 
leading order in x~ >> 1 is (for x2 finite) 
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The constant 

bd,~= ~ '  k -2~ (5.9) 
k E Z  d 

has been calculated for d = 3  and a = 2  by Zasada and Pathria(26): 
b3,2 = 16.53232. 

Taking into account Eq. (5.8), in the limit xl ~ - 1  one finds 

~ N ~  [(1 + 4  IxlI x2)1/2 + 1]/2 IXll (5.1o) 

This result can be put into the familiar first-order finite-size scaling 
form(15,17~ 

mN(T , H)=mo(T ) Yo(YN) (5.11) 

where mN(T, H) is the average magnetization per spin, 

mN(T , H)= H/p~J(O)~ 

mo(T ) = (1 - fl~/fl)~/2 is the spontaneous magnetization, Y N  = mo(T) filiNg 
is the dimensionless scaling variable, and Yo(Y) is the scaling function. 

Finally, we note that the approximations to Eq. (4.20) that follow 
from Eqs. (5.6) and (5.8) can be used to derive corrections to the known 
low- and high-temperature asymptotic behavior of the spherical field. 

A P P E N D I X :  S O M E  M A T H E M A T I C A L  P R O B L E M S  

The formal derivation of Eq. (4.20), carried out for any ~r>0, 
a < d <  2~r, raises some mathematical problems, the solution of which is a 
premise for developing a rigorous theory. Such problems are: 

1. Existence and properties of the original F,(t) of the Laplace trans- 
formation (3.1). 

2. Are the conditions of an appropriate Tauberian theorem sufficient 
for the derivation of the asymptotic expansion (4.7) satisfied? 

3. Justification of the exchangeability of the order of summation over 
keT/d and integration over t~ [0 ,  oo), tacitly assumed in the 
derivation of Eq. (4.13). 

4. Is it possible to define a Madelung-type constant [see Eq. (4.12)] 
for noninteger dimensionality d? 

Without attempting at completeness, we give here some comments on 
these questions. 
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As already mentioned, one of the major advantages of the suggested 
approch is its universality with respect to the value of ~, 0 < ~r < 2, and the 
apparent redundance of the explicit form of F,/2(t). However, some proper- 
ties of F,(t) are necessary, e.g., for solving problem 2. Needless to say, we 
could not find in standard tables of Laplace transforms (22) any explicit 
expression for F~(t) except for the special cases # = 1 and bt = 1/2. 

As usual, the domain of definition of Eq. (3.1) can be extended to the 
complex s-plane by setting 

s" = exp(# Log s) (A.1) 

where Log s is defined as an analytic function in the complex plane with a 
cut along the negative real axis: 

L o g s = l o g I s l + i a r g s ,  fslr - ~ z < a r g s ~  (A.2) 

Thus we consider Eq. (3.1) as defining a Laplace transformation in the half- 
plane Re s > 0 ,  where ( a ) f , ( s )  is analytical, (b) If,(s)l < Isl ", and, 
moreover, (c) for any x > 0, the integral 

fx - + ice 1 p e,~fu(s) ds=F.(t)  (A.3) 
21ri i~ 

where P means the principle value, converges uniformly with respect to t in 
the interval t~> to > 0, to any positive number. According to a theorem, (23) 
the above conditions guarantee that f~(s) at Re s >  0 is a Laplace trans- 
form of the function F~(t), continuous in t > 0 ,  given by Eq. (A.3). 

For  any t > 0  the integral in Eq. (A.3) does not depend on x for all 
x > 0. In the limit x ~ 0 one obtains 

1 fo o (1 + ay ~) cos(ty) + by ~ sin(ty) (A.4) 
Fu(t) = 7 dy 1 + 2ay ~ + y2~ 

where 

a = cos(/~/2), b = sin(#~/2) (A.5) 

One can check that this expression gives the particular cases 

1 fo o cos(ty) + y sin(ty) 
F l ( t ) =  7 dy 1 + y 2  = e  ' (a.6) 
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and 

Fl/2(t)=l f o  
[1 + (y/2) 1/2] cos(ty) + (y/2) m sin(ty) 

dy 
1 + (2y)  x/2 + y 

= ( ~ t ) - ~ / 2  _ e ' [ 1  - ~ ( t m ) ]  (A.7) 

In the case of 0 </~ < 1 one can obtain a more convenient represen- 
tation of F~(t) by deforming the contour of integration in (A.3) to the rims 
of the cut along the negative axis. Thus we find 

fo g y~ e - 'Y F~(t) = s in( /~r: )  dy ( A . 8 )  
~z 1 + 2y ~ cos(/~)  + y2u 

As far as problem 3 is concerned, we note that the Jacobi identity (4.2) 
converts a series uniformly convergent in the interval 0 ~< t ~< To, with any 
To ~ (0, oo), into a series uniformly convergent in the interval to ~< t < 0% 
with any t o > 0. Since the integrand contains a factor F~/2(y2t), which for 
0 < 2  is singular at t = 0 ,  this may cause a problem [see Eq. (4.5)]. To 
avoid it, we subtract from F~(t) its singular asymptotics (as t -~0 )  and 
study separately the convergence of the integral containing it [see 
Eq. (4.10)]. The latter is just the term giving rise to the Madelung-type 
constants. We will note pursue here any further the subtleties involved in 
this problem. 
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